If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=51
We move all terms to the left:
4x^2-(51)=0
a = 4; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·4·(-51)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{51}}{2*4}=\frac{0-4\sqrt{51}}{8} =-\frac{4\sqrt{51}}{8} =-\frac{\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{51}}{2*4}=\frac{0+4\sqrt{51}}{8} =\frac{4\sqrt{51}}{8} =\frac{\sqrt{51}}{2} $
| 8x-2=86 | | -69+14x=27+8x | | -w-3=-3w-5 | | 4-2f=20 | | (2.5x)/(x+2.5)=1.7 | | 2=x^2+2 | | h÷7.2=3.2 | | 5t+10=50 | | 2.3x-5+0.6x=-12.25 | | 2x-99=53+10x | | 9.2.3x-5+0.6x=-12.25 | | 36000=-x^2+12x | | 2x+9+7x+24=180 | | 8-8z=-10z | | (x-3)*(x-3)=25 | | 2.9x-5=-12.25 | | x^2+12x-36000=0 | | 10x-11=22+11x | | -4-y=-3y+8 | | y=780(1.07)^9 | | 9b=7b+8 | | x+1.25x=180 | | -113+5x=10x+57 | | y=210(1.06)^14 | | -9q=-10-7q | | (y-4)/6=-9 | | 0.5n+1=-100 | | (x-5)^2=10x | | -8x-127=6x+167 | | X²+8x+56=0 | | 7x+12=52 | | (3b-4)/5=b+4 |